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1 Introduction

The holographic description [1–3] of condensed matter systems such as superconductors [4,

5] and materials undergoing the quantum Hall effect [6–8] have recently attracted a lot

of interest. The systems are strongly coupled at critical points and hence the holographic

description may give a new analytical method to investigate some aspects of the critical

behaviors in terms of classical gravity.

Some condensed matter systems realized in laboratories are described at their critical

points by non-relativistic conformal field theories (NRCFTs). Non-relativistic conformal

symmetry contains the scaling invariance

t → λzt , xi → λxi ,

where z is a dynamical exponent. When z = 2, the symmetry is enhanced to the

Schrödinger symmetry [9, 10] containing in addition the special conformal transformations.

The NRCFTs based on the Schrödinger symmetry are studied e.g. in [11–16].

Recently, gravity duals for these NRCFTs have been proposed [17, 18] (see [19] for

earlier work on the geometric realization of the Schrödinger symmetry and [20] for the
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relationship with [17, 18]). The background at zero temperature consists in a light-like

deformation of the anti-de Sitter metric — for other gravity solutions and their string

theory embedding, see [16, 21–35]. The background metric is given by

ds2 = L2

(

dxidxi + 2dx+dx−

r2
+

dr2

r2
∓ (dx−)2

r2z

)

, (1.1)

where the x+ direction is compactified as x+ ∼ x+ + 2πx+
0 for some x+

0 . Both the de-

formation term and the compactification break the relativistic conformal symmetry to the

Schrödinger symmetry schz(d) where d is the number of space dimensions of the NRCFT.

The isometries of this metric are identified with the time translations H, dilations D,

mass/particle number N , spatial translations Pi, Galilean boosts Ki, and spatial rotations

Mij , with i, j = 1, . . . , d. For z = 2, an additional generator is present, corresponding to

special conformal transformations C, which together with H and D form an sl(2, R) sub-

algebra. Note that in the NRCFT context the minus sign should be taken in (1.1) so that

the causality properties of a non-relativistic system will be recovered close to the boundary,

see e.g. [36, 37] and [38]. The plus sign turns out to be relevant to describe black holes in

three dimensions (i.e. d = 0 above) [39].

The infinite-dimensional extension of the sl(2, R) ⊕ sl(2, R) symmetry algebra to two

copies of the Virasoro algebras around AdS3 in Einstein gravity [40] leads to severe con-

straints on the quantum theories dual to asymptotically AdS3 spacetimes [41, 42]. Now,

it has been known for a while that an infinite-dimensional extension is possible for the

Schrödinger algebra with z = 2 in any dimension (note this is also true for the isometry

group so(2, d − 1) of AdSd, given by the affine extension ̂so(2, d − 1); the latter is however

not realized as asymptotic symmetry algebra of AdSd [43]) . It is called the Schrödinger-

Virasoro algebra [11]. Moreover, such an algebra can be easily generalized to extend the

schz(d) symmetry for any z. The sl(2, R) part of the Schrödinger algebra has the famil-

iar Virasoro extension while the other generators get enhanced to current algebras. As

we will show below and as was shown independently in [44], one can represent the entire

Schrödinger-Virasoro algebra as generators acting as diffeomorphisms on the solution (1.1).

All these generators are thus candidates to be asymptotic symmetries of an ought-to-be

defined phase space. One would like however to go beyond a kinetic analysis and learn if

part of these symmetries can be dynamically realized around the gravity backgrounds (1.1)

by attempting to construct a phase space accommodating these asymptotic symmetries.

This is the main aim of the paper.

More precisely, we will address the following issues

• Could the charges associated with the Schrödinger-Virasoro algebra be defined?

One first observation one can make from the outset from purely algebraic considera-

tions is the following. The author of [45] classified all possible central extensions for

the Schrodinger-Virasoro algebra, showing that only the Virasoro could be centrally

extended. This means in particular that the current algebra with generators Nm

whose zero mode is the number operator (see (2.5)) has level k = 0. But it is known

that the only unitary representation of such an algebra is the trivial one, for which
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Nm = 0, ∀m. Hence, the corresponding gravity dual would only be able to describe

field theories with zero number operator, which would be of little interest!1 How-

ever, non-unitary representations are not excluded on general grounds, since little is

known on the nature of the field theory dual. On the other hand, infinite-dimensional

extensions are possible even if the current algebra is not realized.

• Could the charges represent the Schrödinger-Virasoro algebra?

Since the Schrödinger spacetimes are not asymptotically AdS, the holographic renor-

malization techniques based on Fefferman-Graham expansions used extensively in the

AdS/CFT correspondence to compute the charges [46, 47] are not directly applicable but

can be used as a guideline for extrapolating the charges, see e.g. the discussion in appendix

C of [48]. While conserved charges for black holes can be defined using the regulated

on-shell action for a phase space with fixed temperature and chemical potential [23], a

Hamiltonian [49, 50] or Lagrangian [51–53] definition of conserved charges is necessary

in order to obtain a representation of the Schrödinger symmetries via a Dirac bracket.

The conserved charges obtained via holographic and Hamiltonian/Lagrangian methods are

identical up to background shifts at least for AdS spacetimes, see e.g. [54, 55]. Note also

that a holographic stress-tensor for Schrödinger space-times has recently been defined [56].

The Lagrangian methods [51–53] can be used straightforwardly, see appendix A for

a short summary. Note however that in general the asymptotic charges of [51–53] could

be corrected due to counterterms in the regulated action [57], see [58, 59] for related

discussions. Counterterms can be obtained for a phase space of fluctuations around a

fixed Schrödinger black brane [23] and since they do not contain derivatives of the fields,

they do not contribute to the charges. The computation of charges of [51–53] however

requires a phase space containing also the zero temperature background and counterterms

for such general variations are unfortunately very difficult to obtain due to non-linearities

at infinity (see however [56] for progress on this issue). We will assume in what follows that

the supplementary counterterms, if any, to those of [23] do not contribute to the definition

of covariant phase space charges.

One difficulty than one faces right away is that the charges should be defined as an

integral over x+ and the infinitely extended spatial directions xi. A regulator along the

spatial directions is therefore needed in order to define finite charges. The approach taken

in this paper is to consider that the xi have a finite extent, i.e. that the NRCFT is defined

in a “box”. We will see that the introduction of this regulator is sufficient to be able to

define the charges associated to the Schrödinger-Virasoro group.

It has been proven some time ago that once canonical charges associated with the

asymptotic symmetries are defined and once a phase space preserved by the symmetries

is shown to exist, the charges represent the algebra of asymptotic symmetries through a

Dirac bracket [50], see also [53] for the analogous theorem in Lagrangian formalism. Here,

however, one cannot use blindly these theorems since the regulator may also be transformed

under the asymptotic symmetries. Only a subset of the proposed Schrödinger-Virasoro

1We thank P. Hořava and Ch. Melby-Thompson for sharing that observation with us.
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generators will preserve the regulator and will thus be represented under the usual bracket.

We will propose a modified bracket which includes a change of regulator in order to treat

the other candidate symmetries. The status of these transformations will be commented

in the conclusions.

Spacetimes admiting the Lifshitz symmetry have also been considered recently in the

holographic context, see [60]. We will also discuss briefly in appendix B the extension of

our analysis to those spacetimes.

The organization of this paper is as follows. The asymptotic analysis is presented

in section 2. The method used is illustrated in some detail. We will mainly discuss the

dynamical exponent z = 2 in all dimensions and extend the analysis to an example with

dynamical exponent bigger than 2, namely z = 3 (for d = 2). We finally conclude and

interpret our results in section 3. A short review of the method to compute (asymptotic)

charges in the covariant formalism is given in appendix A, while asymptotic symmetries of

Lifshitz spacetimes are discussed in appendix B.

2 Asymptotic analysis of gravity duals to NRCFTs

This section is devoted to a detailed analysis of the asymptotic symmetries of the

Schrödinger metrics for d > 0 and their realization via an algebra of asymptotic charges

on some class of metrics that asymptotes to it. The backgrounds (1.1) possess d space

directions and are part of the ten or eleven dimensional metrics conjectured to be dual to

d dimensional non-relativistic systems.

The successive steps to define an asymptotic algebra of charges that we will implement

in the sequel are the following:

1. We will start by defining a class C of candidate asymptotic Killing vectors of the

metrics (1.1) by solving the Killing equations up to a well chosen order in the r

expansion led by intuition. Solving the Killing equations to all orders in r would

result in finding only the exact Killing vectors, while solving only at the leading

order would lead to a very large set of candidate asymptotic symmetries.2

2. We will then construct a phase space F together with a class of asymptotic symmetries

A ⊂ C satisfying the following conditions:

(a) The metrics in F should approach (1.1) in the limit r → 0.

(b) The phase space F must contain solutions of interest such as black hole solutions.

(c) F must be invariant under the action of the finite diffeomorphisms associated

with asymptotic Killing symmetries belonging to A.

(d) The asymptotic charges of the metrics in F associated with elements of A must

be finite, conserved, and integrable. The asymptotic charges are computed by

using the methods of [51–53] which are briefly reviewed in appendix A.

2See [61], page 142 and the appendix of [62] for a detailed explanation on how to solve the Killing

equations at first order in the radial expansion. The resolution at a given subleading order is then straight-

forward.
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The phase space is usually specified by a set of boundary conditions. Here instead, we

will give an explicit construction of F and A starting from the candidate asymptotic

Killing vectors. Only a subset of the candidate asymptotic Killing vectors C will be

promoted to asymptotic symmetries A of F .

3. In the phase space F , we will then study the algebra of asymptotic charges which

should be isomorphic to the algebra of asymptotic symmetries up to possible cen-

tral extensions.

We start by deriving candidate asymptotic Killing vectors by solving the asymptotic

Killing equations in section 2.1. We then turn to the realization of the candidate asymptotic

symmetries on a phase space. Black hole solutions that asymptote the metrics (1.1) are

not known for general dimensions and critical exponents z. Therefore, we will first focus

in section 2.2 on the exponent z = 2 for which d-dimensional black hole solutions [26],

generalizing the ones of [23–25], are known. In section 2.3, we treat the exponent z = 3

in five dimensions D = 5 (d = 2) using solutions obtained by acting with the Null Melvin

Twist on non-extremal D3-brane solutions [63] as an example of critical exponent greater

than 2.

2.1 Candidate asymptotic Killing vectors

For z > 1, the term 1
r2z (dx−)2 is the leading divergent term close to the boundary. This

asymptotic behavior differs from asymptotically flat or anti-de Sitter spacetimes. When

solving the Killing equations

Lξasgµν → 0 for r → 0, (2.1)

up to certain well chosen orders (depending on each µν component), we obtain the following

vector fields,

ξas =
r

z
L′(x−)∂r + L(x−)∂−

+

(

N(x−) − z − 2

z
x+ L′(x−) − ~x · ~X ′(x−) − ~x2 + r2

2z
L′′(x−)

)

∂+

+

(

Xi(x
−) +

xi

z
L′(x−) + Mijxj

)

∂i , (2.2)

where Mij is antisymmetric. The exact Killing vectors are recovered when L′′(x−) = 0,

N ′(x−) = 0 and X ′′
i (x−) = 0. A detailed analysis implies that the rotations cannot be

extended to x−-dependent functions.

Defining the generators

L̂n = ξ
(

L(x−) = −2−n/2(x−)n+1
)

for n ∈ Z,

N̂n = ξ
(

N(x−) = 2−n/2(x−)n
)

for n ∈ Z, (2.3)

X̂i
n = ξ

(

Xi(x−) = −2−n/2(x−)n+ 1

2

)

for n ∈ Z +
1

2
,

– 5 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
2

one gets the algebra

[L̂m, L̂n] = (m − n)L̂m+n,

[L̂m, N̂n] =

(

− z − 2

z
(m + 1) − n

)

N̂m+n,

[L̂m, X̂i
n] =

(

m

z
− n +

2 − z

2z

)

X̂i
m+n, (2.4)

[X̂i
m, X̂j

n] = (m − n)N̂m+nδij ,

[Mij , X̂
k
n] = −δikX̂j

n + δjkX̂i
n,

[N̂m, N̂n] = 0, [N̂m, X̂i
n] = 0,

which generalizes to arbitrary z the Schrödinger-Virasoro algebra studied in [11, 45] for

z = 2 and the one proposed in [44].

When z 6= 2, the exact Killing vectors are given by Mij ,

L̂0 =

(

− r

z
,−x−,

z − 2

z
x+,−x1/z, . . . ,−xd/z

)

dilatation,

L̂−1 = (0,−
√

2, 0, 0, . . . , 0) x− translation,

N0 = (0, 0, 1, 0, . . . , 0) x+ translation, (2.5)

X̂i
1/2 = (0, 0, 2−1/4xi, 0, . . . ,−2−1/4x−, . . . , 0) boost,

X̂i
−1/2 = (0, 0, 0, 0, . . . ,−21/4, . . . , 0) xi translation.

The Killing vector L̂−1 will be interpreted as the Hamiltonian and N̂0 as the particle

number. For z = 2, special conformal transformations are part of the symmetries. The

corresponding generator L̂1 is given by

L̂+1 =

(

− 2−1/2 x− r,−2−1/2(x−)2,
−→x 2 + r2

2
2−1/2,−2−1/2x1x−, . . . ,−2−1/2xixd

)

special conformal transformation. (2.6)

In that case, the L̂−1, L̂0, L̂1, Xi
1/2, Xi

−1/2 and N̂0 form the algebra denoted as sch2(d).

This infinite-dimensional algebra is a natural generalization of the Schrödinger algebra.

However, the appearance of this algebra in the asymptotic Killing equations does not

imply that it is actually realized, i.e. associated with finite, conserved, integrable and well

represented charges in a phase space containing interesting solutions. We now turn our

attention to this issue.

2.2 Realization of the asymptotic symmetries on a phase space for z = 2

This section is devoted to realize the asymptotic symmetry algebra on a phase space for

z = 2 and d > 0 containing solutions of physical interest and such that the charges are

finite, integrable, asymptotically conserved and well represented via a Dirac bracket. In

section 2.2.1, we start the construction of this phase space by considering a two-parameter

family of black brane solutions and checking whether or not the charges associated with

– 6 –
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the candidate asymptotic Killing vectors (2.2) for z = 2 give finite, integrable, conserved

and well represented charges. Next we will turn in section 2.2.2, to the construction of a

restricted phase space by acting with finite diffeomorphisms associated with the asymptotic

Killing vectors (2.2) (that fulfill the above conditions on the pre-phase space) on the black

branes in order to obtain a phase space that is invariant under the asymptotic symmetry

algebra.

2.2.1 Black branes for the critical exponent z = 2

Building on earlier work of [23–25], the authors of [26] constructed for any dimension a

class of black hole solutions which asymptotes to (1.1) for z = 2:

ds2 = r2h− d
d+1

([

(f−1)2

4(h−1)
− f

]

r2dx−2 + (1+f)dx+dx− +
h−1

r2
dx+2

)

+ h
1

d+1

(

r2dxidxi +
dr2

r2f

)

, (2.7)

A =
1+f

2h
r2dx− − 1−h

h
dx+ , (2.8)

φ = −1

2
ln h , (2.9)

where h(r) = 1+β2rd+2
0 /rd and f(r) = 1−rd+2

0 /rd+2, β is an arbitrary parameter, and the

horizon is located at r = r0. The metric (2.7) and matter fields (2.8) and (2.9) are solution

of the following Einstein gravity action coupled to a dilaton and a massive vector field,

S =
1

16πGd+3

∫

dd+3x
√−g

[

R − a

2
(∂µφ)(∂µφ) − 1

4
e−aφFµνFµν

−m2

2
AµAµ − V (φ)

]

, (2.10)

where Gd+3 is the (d+3)-dimensional Newton’s constant, the scalar potential is given by

V (φ) = (Λ+Λ′)eaφ + (Λ−Λ′)ebφ, and the coefficients are

Λ = −1

2
(d+1)(d+2) , Λ′ =

1

2
(d+2)(d+3) , m2 = 2(d+2) , a = (d+2)b = 2

d+2

d+1
.

In order to be able to interpret the solution as a gravity dual to a finite temperature non-

relativistic system, we are required to identify the x+ coordinate as x+ ∼ x+ + 2πx+
0 .

The particle number N associated with ∂+ has then discrete values. Using the methods

described in appendix A, the charge (D−2)-forms associated with exact symmetries (eval-

uated at constant x− and at any finite r) are found to be integrable in the phase space3

parameterized by β and r0. We denote the set of fields given in (2.7)–(2.9) by Φ(β, r0),

Φ(β, r0) := {gµν(β, r0), Aµ(β, r0), φ(β, r0)}. (2.11)

3This phase space is only a preliminary one. We should still consider all finite diffeomorphisms associated

with the asymptotic Killing vectors to built the entire phase space in order for it to be invariant under the

action of asymptotic symmetries.
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Setting the charges of the background Φ̄ = Φ(0,+∞) to zero by convention, the final

expressions for the conserved exact charges are given by

N ≡ Q−∂+
=

D − 1

16πGd+3

β2LD−2

rD−1
0

(2πx+
0 )Vold, (2.12)

H ≡ Q∂−
=

D − 3

32πGd+3

LD−2

rD−1
0

(2πx+
0 )Vold, (2.13)

Pi ≡ Q∂i
= 0, Mij = 0, (2.14)

where Vold =
∫

ddx is the transverse volume and D = d + 3. The Hamiltonian H and

particle number N are finite provided we consider a finite volume Vold, i.e. we introduce

a ‘box’ in the xi-space to regulate the charges. These expressions (2.12)–(2.14) have been

obtained using a Mathematica code4 implementing the formulae for the charges in ap-

pendix A for d = 1, 2, 3. The expression for general d has been guessed by matching that

in lower dimensions, but given the simplicity of the final expression, the result is expected

to be valid for any d. The Hamiltonian is identical to the one of the anti-de Sitter black

brane as expected from the Null Melvin Twist procedure [23–25].

If one plans to construct a phase space containing the black brane solutions (2.7), a

necessary (but not sufficient) condition that any asymptotic symmetry ξas of that phase

space should obey is that the charge D − 2 form δQξas =
∫

kξas [δβ,r0
Φ(β, r0); Φ(β, r0)]

evaluated on Φ(β, r0) for small perturbations of r0 and β should be finite, integrable and

conserved. For a general candidate asymptotic Killing vector (2.2), we can show that

the charge is indeed finite (if we introduce a box) and integrable. Computing the charge

Qξas [Φ(β, r0); Φ̄] =
∫ Φ(β,r0)

Φ̄
δQξas of the solution Φ(β, r0) with respect to the background

Φ̄ (1.1), we get the result

Qξas [Φ(β, r0); Φ̄] = L(x−)H− N(x−)N +
N

Vold

∫

ddx

(

~x. ~X ′(x−) +
1

4
~x2L′′(x−)

)

. (2.15)

In particular, we get

D = Q2L̂0
= −2x−H, (2.16)

C = Q−
√

2L̂1
= (x−)2H +

N
Vold

∫

ddx
1

2
~x2, (2.17)

Ki = Q−21/4X̂i
1/2

=
N

Vold

∫

ddxxi. (2.18)

The dilatations and special conformal transformations are explicitly x−-dependent. They

are therefore not explicitly conserved in time. We will however go back to the issue of

conservation after having introduced the Dirac bracket of charges.

Let us now study if the above charges represent the algebra (2.4) (with z = 2). We

should be careful to the fact that to have finite charges, we need to introduce a regulator,

i.e. a finite box of integration
∫

ddx. An important point is that the box is not invari-

ant under all the candidate asymptotic Killing vectors (2.2) with a non-vanishing spatial

4The Mathematica code can be downloaded from the homepage of G.C.
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component ξi, i = 1 . . . d. Since the domain of integration is part of the data determining

how to compute the charges, this could mean that the candidate asymptotic Killing vector

modifying the location of the box should be removed from the asymptotic algebra. How-

ever, the regulator resembles more a technical obstacle than a physical limitation. Let us

imagine that one could find a gravity dual to a NRCFT with fields (including the Hamil-

tonian density and particle number density) falling-off at spatial infinity xi → ±∞ instead

of remaining constant. The system would be finitely extended and the charges associated

with asymptotic symmetries would be defined. All these asymptotic symmetries would be

interpreted in the dual picture as global symmetries of the boundary theory which are not

preserved by particular solutions of that theory but which map a solution to another one

with a transformed Hamiltonian and particle number density.

Note also that we do not expect the algebra to be centrally extended. As shown in [45],

a central extension could only appear in the commutation relation of the Virasoro gener-

ators. Now, the central extension in three-dimensional AdS spacetime for example [40] is

possible because the Virasoro modes are expanded in exponentials depending on an angu-

lar coordinate. The central term is given by the integral of some function of the Virasoro

modes in this angular coordinate which leads to a Kroneker delta δm+n,0 originating from

the orthogonality relations of the exponentials. In our case, since the modes L̂m are poly-

nomials in x−, variable that we do not integrate over, it is impossible to obtain a central

term of the required form proportional to a Kroneker delta δm+n,0. Therefore, the central

term has to vanish.

In order to define the action of symmetries on other generators including the ones which

changes the shape of the box of integration, we will define the following Dirac bracket

{Qbox
ξ1 [Φ; Φ̄],Qbox

ξ2 [Φ; Φ̄]} := δΦ
ξ2Qbox

ξ1 [Φ; Φ̄] + δbox
ξ2 Qbox

ξ1 [Φ; Φ̄], (2.19)

where the first term is the usual Dirac bracket involving the variation of the fields, while

the second term

δbox
ξ2 Qbox

ξ1 [Φ; Φ̄] := lim
ǫ→0

1

ǫ

(

Qbox(x−ǫ ξ2)
ξ1

[Φ; Φ̄] −Qbox(x)
ξ1

[Φ; Φ̄]
)

(2.20)

accounts for the variation of the regulator. Here, we consider the box as some mapping

of S1 × Sd (with coordinates y+, yi) to the manifold parameterized by some functions

xµ(y+, yi). Using these definitions, one gets the expected results

{X i
m,X i

n} = (m − n)Nm+nδij , (2.21)

{Nm,Ln} = mNm+n, (2.22)

{X i
m,Ln} =

(

m − n

2

)

X i
m+n, (2.23)

while the individual contributions in (2.19) are not anti-symmetric under the exchange

of ξ1 and ξ2 and thus do not make any sense by themselves. However, we also get the
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unexpected expressions

{Lm,Ln} = (m − n)Lm+n − N
Vold

∫

ddx
~x2

4
L̂m L̂′′′

n , (2.24)

{Lm,Nn} = 0, (2.25)

{Lm,X i
n} =

(m + 1)(2m − 2n − 1)

2(2m + 2n + 1)
X i

m+n, (2.26)

which show that the Dirac bracket as defined in (2.19) does not make sense in general since

it is not anti-symmetric. However for the charges associated with the exact Killing vectors,

it is easy to check that this Dirac bracket is well defined and is isomorphic to the algebra

of exact symmetry generators. Note that we have to take into account the effect coming

from the variation of the box for the exact charges to be correctly represented. The Dirac

bracket could be “anti-symmetrized” by definition but it would not help since the average

between e.g. the correct right-hand side in (2.22) and the incorrect right-hand side of (2.25)

would not be isomorphic to the algebra of generators.

Using the definition of the modified Dirac bracket, let us now notice that even though

D and C are time dependent, their total time derivatives

D

Dx−D =
∂

∂x−D + {D,H} = −2H + 2H = 0, (2.27)

D

Dx−C =
∂

∂x−C + {C,H} = 2x−H + D = 0 (2.28)

vanish as it should. Expanding in modes as in (2.3), we can also check that all Schrödinger

charges Ln, n = −1, 0, 1, N0, X i
n, n = ±1

2 associated with asymptotic vectors with non-zero

Ln, Nn and Xi
n respectively are totally conserved,

D

Dx−Ln = 0,
D

Dx−Nn = 0,
D

Dx−X i
n = 0. (2.29)

This conservation property is familiar from the AdS3 example in Einstein gravity [40] where

even though the Virasoro charges depend explicitly on time, they are totally conserved

because the symplectic flux at the boundary is zero. However, contrary to the AdS3

example, the total derivative of the infinite-dimensional extension of those generators is

not defined because the Dirac bracket is not defined.

At this point in the discussion, we could summarize as follows: only the exact sym-

metries of the background, i.e. the Schrödinger algebra sch2(d), are associated with well-

defined charges on our pre-phase space provided that we introduce a regulator.

2.2.2 Restricted phase space for z = 2

The set of candidate asymptotic symmetries has been reduced to the set of exact

Killing vectors. Let us now act with finite diffeomorphisms of parameter p associ-

ated with any Schrödinger generator on the black brane solutions (2.7), and check

that finiteness, conservation and integrability hold for these new solutions Φ[β, r0, p] ≡
(g[β, r0, p], A[β, r0, p], φ[β, r0, p]) as well.
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We first focus on diffeomorphisms associated with the candidate asymptotic Killing

vector (2.2) with L(x−) = 0, we will specify the modes corresponding to exact Killing

vectors only afterwards. The vector field

ξas(~X(x−),N(x−)) = (N(x−) − ~x.~X′(x−))∂+ + Xi(x−)∂− (2.30)

generates the following active finite diffeomorphism of parameter p,

xi → xi + pXi(x−), r → r, x− → x−,

x+ → x+ + p
(

N(x−) − ~x.~X′(x−)
)

− p2

2
~X(x−). ~X′(x−). (2.31)

The integrability conditions

I ≡
∫

S
δ
(2)
r0,β,pkξas(L(x−),N(x−))[δ

(1)
r0,β,pΦ(r0, β, p); Φ(r0, β, p)] − ((1) ↔ (2)) = 0 (2.32)

should hold for all asymptotic symmetries ξas(L(x−), N(x−)) (see eq. (2.2)) of interest. We

get that

I =
1

Vold

∫

ddx
(

N′(x−) − (~x + p~X(x−)).~X′′(x−)
)

×
(

δ(1)

( N
2πx+

0

)

δ(2)p − [(1) ↔ (2)]

)

L(x−), (2.33)

where N is the particle number depending on β and r0 given in (2.12). For the modes

corresponding to exact symmetries, i.e. N = 1, Xi = −2−1/4x− and Xi = −21/4, the

integrability condition I = 0 is fulfilled.

Let us also compute the integrability condition for the diffeomorphisms associated with

a non-zero L(x−). We focus on a particular mode of L(x−): L̂n(x−) = −2−n/2(x−)n+1 and

will specify to the exact modes only afterwards. The finite diffeomorphisms have the form

x− → x−(1 − pn(x−)n)−1/n, xi → xi(1 − pn(x−)n)−(n+1)/(2n),

r → r(1 − pn(x−)n)−(n+1)/(2n), x+ → x+ − n + 1

4

r2 + ~x2

x−
(

(1 − pn(x−)n)−1 − 1
)

,

and we obtain

I =
1

Vold

∫

ddx

(

n(n2 − 1)
~x2

4
(x−)n−2(1 − pn(x−)n)−

1+7n
2n

)

×
(

δ(1)

( N
2πx+

0

)

δ(2)p − ((1) ↔ (2))

)

L(x−). (2.34)

This expression vanishes for n = −1, 0, 1. This fact is consistent with the expectation

that all the exact symmetries of the background will belong to the asymptotic symmetry

algebra. Remark that if we were able to define a modified Dirac bracket that represents

correctly all the charges associated with ξas, we would conclude from expressions (2.33)-

(2.34) that we have to fix the number of particles N = constant in order to get integrable

charges.
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On the phase space constructed by acting with Schrödinger diffeomorphisms only, the

conserved charges (which are complicated non-linear functions of the metric) are finite (if

we introduce a ‘box’), conserved and well represented. The asymptotic symmetry algebra

can be summarized as follows:

(i) strictly speaking, the asymptotic algebra is empty since our charges are either null

or infinite, the phase space is therefore also empty;

(ii) if we introduce a box, the infinite charges are regulated. We need to restrict the

asymptotic symmetry algebra to the exact symmetry algebra in order for the charges

to be well represented. If we require the box to be invariant under the asymptotic

symmetry algebra, we get as asymptotic algebra only the Hamiltonian L̂−1 and the

particle number N̂0 (supplemented by the rotations Mij if we choose the box to be a

sphere centered at the origin of the x-space);

(iii) if we allow the box to be acted upon by other generators, the asymptotic symmetries

consist of all exact generators sch2(d) = {L̂−1, L̂0, L̂1, N̂0, X̂−1/2, X̂1/2,Mij}.
The phase space constructed in the previous sections is extremely limited since it con-

tains no bulk excitations. It would be interesting to define boundary conditions including

at the same time bulk excitations and Schrödinger asymptotic symmetries. However, given

the non-linearities in the asymptotic region, such an analysis would be pretty tedious, see

however [56].

2.3 Realization of the asymptotic symmetries on a phase space for z > 2: an

example

The generic family of black brane solutions with z 6= 2 in any dimension is not known. We

will therefore analyze the case z > 2 by considering a particular case: z = 3 in D = 5. As

for the z = 2 case, we will first compute the charges for a family of black holes depending

on two parameters and verify their conservation, finiteness (up to a regulator), integrability

and representation through a Dirac bracket. Since the computations are analogous to the

ones of the z = 2 case, the asymptotic algebra will a priori not contain any infinite-

dimensional extensions of the exact symmetry group of the background. Next we turn to

the construction of the entire phase space by acting with finite diffeomorphisms associated

with the asymptotic Killing vectors.

2.3.1 Black holes with z = 3 in d = 2

For z 6= 2, we do not generically know black hole solutions that asymptote (1.1). But

nicely, for the particular case of z = 3 in d = 2, the following black hole metric5

ds2 =
1

r2f(r)
dr2 − (dx−)2

(

f(r)

r6
− r2r4

+

4β2

)

+ dx−dx+

(

1 + f(r)

r2

)

+ r2r4
+β2(dx+)2

+
dx2

1 + dx2
2

r2
, (2.35)

5We thank M. Rangamani for sharing his unpublished notes on these solutions analogous to the ones

of [63].
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where f(r) = 1 − r4
+r4 does asymptote (1.1). It is a solution of the action

S =
1

2κ2

∫

d5x
√−g

(

e−2φ

(

R − 2Λ − 1

12
HµνρH

µνρ

)

− 1

12
FµνρF

µνρ

)

+
2

κ2

∫

B ∧ F , (2.36)

where F = dC and H = dB. The metric (2.35) is supported by the following cosmological

constant and matter fields

B =

(

1 + f(r)

r4
dx− + 2r4

+β2 dx+

)

∧ dx1 , (2.37)

C = −2e−φ f(r)

r4
dx− ∧ dx2, (2.38)

Λ = −10 +
4

1 + r4
+β2

, eφ =
1

√

1 + r4
+β2

. (2.39)

In the coordinates chosen, even though the metric asymptotically approaches the one

of (1.1), the dilaton and the field C have different value at infinity for different values

of r4
+β2. The fields are therefore not strictly speaking asymptotic to the zero-temperature

solution. This will make the analysis of asymptotic charges quite subtle. In order to de-

scribe a non-relativistic system with a discrete spectrum for the particle number, we should

identify the x+ coordinate as x+ ∼ x+ + 2πx+
0 . Hence, any transformation which does not

depend periodically on x+ cannot exist. In particular, the dilatation and all Virasoro gen-

erators which are part of the candidate asymptotic Killing vectors (2.2) cannot be part of

the asymptotic symmetries, except the Hamiltonian for which L′(x−) = 0 (in contrast to

the z = 2 case).

It turns out that the charge D − 2-form associated with the generator ∂− is not inte-

grable in the phase space parameterized by β and r+. Therefore, the Hamiltonian cannot

be associated with ∂− following standard prescriptions. One way to define the Hamilto-

nian consists in multiplying the generator ∂− by an “integrating factor” f(r+, β) chosen

such that the resulting charge is integrable, see [53]. One finds that f(r+, β) has to have

the form

f(r+, β) = r2
+f̃(r4

+ + β2r8
+) . (2.40)

A natural choice for f̃ is to require that the integrating factors goes to 1 when r+ goes to

zero. The resulting unique factor is given by

f(r+, β) =
1

√

1 + β2r4
+

, (2.41)

which is in fact the same expression as the dilaton which is non-trivial at infinity. The

Hamitonian is then defined as

H ≡ 1

f(r+, β)
Qf(r+,β)∂−

. (2.42)
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We will see that this is the correct prescription to obtain an isomorphism between the

algebra of asymptotic symmetries and the Dirac bracket.6

Setting the charges of the background to zero by convention, the final expressions for

the charges associated with the vectors (2.2) are given by

H ≡ f(r+, β)−1Qf(r+,β)∂−
=

r4
+(1 + r4

+β2)3/2

16πG
(2πx+

0 )Vold ,

N ≡ Q−∂+
=

r4
+β2(1 + r4

+β2)3/2

4πG
(2πx+

0 )Vold ,

QX̂i
n

=
N

Vold

∫

ddxxiXi′
n (x−) , (2.43)

QN̂n
= −Nn(x−)N ,

where prime denotes derivative with respect to x−. Note that the charge associated with

translations X i
−1/2 and angular momentum are zero. Using the definition of the Dirac

bracket (2.19), one obtains {H,Nn} = 0, for all n ∈ Z and {H,X i
n} = 0, for all n ∈

Z + 1
2 . We see that the isomorphism with the symmetry algebra (2.4) holds only for the

expected generators N̂0, X̂i
−1/2 and X̂i

1/2 while the representation of the infinite-dimensional

generalizations of these generators breaks down, exactly as in the z = 2 case. One can

check that the remaining Dirac brackets have the expected commutation rules.

2.3.2 Restricted phase space for z = 3, d = 2

We could act with the finite diffeomorphisms associated with the candidate asymptotic

symmetries on the black holes (2.35) to construct a restricted phase space. According to the

analysis done in the previous section, the candidate asymptotic symmetries are reduced to

the Galilean algebra and the particle number ξcand = {Ĥ, N̂ , X̂i
−1/2, X̂

i
1/2, M̂12}. It is then

straightforward to check that the family obtained by acting with the finite diffeomorphisms

associated with these vectors on the black brane solutions is a good phase space, i.e. is

invariant under the Galilean algebra together with the particle number, and is such that

all charges on the family are finite (up to the regulator), integrable, totally conserved and

well represented via the generalized Dirac bracket (2.19).

3 Conclusion and discussion

We have studied the representation of asymptotic charges in asymptotically Schrödinger

spacetimes. While there exists a consistent infinite-dimensional algebra which extends

the Schrödinger algebra in any dimension and for any dynamical exponent z, the charges

associated with these generators have been shown not to obey a regular Dirac bracket

algebra in the sense of Brown-Henneaux.

6In the treatment of [64], the integrating factor that was considered in order to define the energy was

not compensated by an overall inverse integrating factor in front of the integrated charge. The current

prescription would also be natural in that context, for it would reproduce the expectation that the energy

of Gödel black holes and black strings in pp-waves spacetimes are equal since those solutions are related by

dualities [65].
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Our derivation proceeded by providing a Lagrangian method to derive the conserved

charges of black branes in Schrödinger spacetimes. Since these branes are infinitely ex-

tended, they require a cut-off in each spatial direction. The regularized charges then

depend on this spatial cutoff which is not invariant under the whole Schrödinger algebra.

A Dirac bracket between two charges including the variation of the cut-off was defined and

was shown to represent the asymptotic Schrödinger algebra of symmetries. Moreover, the

Schrödinger asymptotic charges were shown to be conserved in the sense that the total

derivative of the charges, including both the explicit time dependence and the commutator

with the Hamitonian, was shown to be zero. However, none of the proposed generators

in the infinite extension of this algebra appeared to have well-defined Dirac brackets on

the restricted phase space of black branes, i.e. on the finite-temperature solutions. We

thereby concluded that the infinite-dimensional extension is not part of any asymptotic

symmetry algebra of a phase space containing these black branes. We can thus argue that

non-relativistic systems having a gravity dual will contain fields forming representations of

the Schrödinger group, and not the Schrödinger-Virasoro group.

Let us now discuss some extensions and directions for future developments. Our asymp-

totic analysis is identical if one considers the global coordinates for the Schrödinger metric

obtained in [66] since the behavior of the metric only differs from the metric we studied by

terms becoming subleading at the boundary. Also, since the charges are regulated using a

box in all dual spatial directions, one could equivalently consider an infinitesimal box or,

equivalently, charge densities and the same conclusions would apply.

An interesting possibility comes from the Schrödinger spacetime with a spherical spa-

tial boundary described in [67]. One could expect that the finite area spatial boundary

would give finite charges without needing a regulator which introduced all the problems

in the representation of the charges.7 Therefore, an infinite-dimensional extension in these

backgrounds is not discarded. The boundary theory would however have to be defined on

a sphere which is pretty usual from the condensed matter perspective.

The canonical charges associated with the generators of time-translation, translation

in the compact null direction and spatial translations were obtained straightforwardly for

z = 2. For z = 3, however, a subtle manipulation of the conserved charge was necessary

in order to define an integrable charge which is still associated with the canonical time

and which still represent the algebra of asymptotic symmetries. General results on the

equivalence of Hamiltonian and Lagrangian formalisms, and the unicity of the charges

shows that identical results would be obtained in Hamiltonian framework if one also uses

the prescription (2.42) we introduced for the integration in phase space.

We also comment in appendix B on the relationship between our results and another

class of gravitational backgrounds relevant to the non-relativistic AdS/CFT correspon-

dence, namely the Lifshitz spacetimes [60]. We show that a candidate infinite-dimensional

extension of the Lifshitz symmetry can be defined. However, a regulator and a modified

Dirac bracket should be defined. This can be argued to lead to the same problems as the

ones encountered in the Schrödinger case.

7We thank A. Adams for a discussion on that issue.
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Another approach to look at gravitational backgrounds dual to NRCFTs with

Schrödinger invariance relies on the observation that, in non-relativistic systems, the num-

ber or mass operator usually appears as a central element between the translations and

boosts instead of being a generator on its own.8 Since central extensions cannot appear

in the bracket of exact symmetries, one idea would be to look at spacetimes which do not

admit the full Schrödinger algebra as an exact symmetry group, but instead realize it as

its asymptotic symmetry group. One natural question is to ask if the Lifshitz spacetimes

can realize such a scenario since they admit translations but not boosts as exact symme-

tries. However, the exact statement is that the central elements can appear only in the

Dirac bracket between two asymptotic symmetries [50]. This is easily seen by using the

anti-symmetry of the central charge,

KPi,Kj =

∫

S∞

kPi [LKiΦ̄; Φ̄] = −
∫

S∞

kKj [LPiΦ̄; Φ̄] (3.1)

between the translations and rotations, where Φ̄ are the fields of the background including

the metric. Since the Lifshitz spacetime is translation-invariant, it is not appropriate to

realize that idea. The only way the number operator could appear as central element would

be to consider a gravity background where both translations and Galilean boosts would be

realized as asymptotic isometries.

In place of Schrödinger algebras, NRCFT can be based on Galilean conformal alge-

bras [68, 69]. The proposal of gauge/gravity correspondences based on Galilean conformal

algebras has been developed so far using the Newton-Cartan formalism (see e.g. [70] and

references therein). It has been argued recently in [71] that infinite-dimensional extensions

of the asymptotic symmetry group could occur in that context as well. Unfortunately, our

charge analysis does not extend straightforwardly to this case since the lack of a regular

metric in the bulk would prevent one to use covariant phase space methods to define the

conserved charges of the theory to infirm or confirm the proposal.

In this paper we focused on spacetimes of dimensions strictly greater than 3 which are

conjectured to be dual to field theories living in a positive number of spatial dimensions.

However, from the classical asymptotic analysis of AdS spaces of [40, 43, 72], it is expected

that the three-dimensional background will exhibit specific features with respect to its

higher-dimensional counterparts. One can show it is indeed the case: as for AdS3, the

asymptotic symmetry algebra becomes infinite-dimensional with completely well-defined

charges satisfying a Virasoro algebra. Those results will be presented elsewhere.
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Bruxelles, Belgium). The work of KY was supported in part by the National Science

Foundation under Grant No. PHY05-51164 and by the Grant-in-Aid for the Global COE

Program ”The Next Generation of Physics, Spun from Universality and Emergence” from

the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

A Method to compute conserved charges

In this appendix, we will briefly review the formalism of [51–53] to compute conserved or

asymptotically conserved charges. We will present the method for gravity in D dimen-

sions coupled to one p-form and then provide the relevant definitions for a more general

Lagrangian including multiple p-forms, scalar fields as well as U(1) and gravitational Chern-

Simons terms.

A.1 General definitions illustrated on an example

Let us explain how conserved charges are defined on an example: the Einstein–p-form

system in D dimensions with the following action,

I =
1

16πG

∫

dDx

[√−g

(

R − 1

2
⋆ F ∧ F

)]

, (A.1)

where F = dA. The gauge parameters of the theory (ξ,Λ), where ξ generates infinitesimal

diffeomorphisms and Λ is the parameter of U(1) gauge transformations are endowed with

the Lie algebra structure

[(ξ,Λ), (ξ′,Λ′)]G = ([ξ, ξ′], [Λ,Λ′]), (A.2)

where the [ξ, ξ′] is the Lie bracket and [Λ,Λ′] ≡ LξΛ
′ − Lξ′Λ. We will denote for com-

pactness the fields as φ ≡ (gµν ,A) and the gauge parameters as f = (ξµ,Λ). For a given

field φ, the gauge parameters f satisfying

Lξgµν ≈ 0, LξA + dΛ ≈ 0, (A.3)

where ≈ is the on-shell equality, will be called the exact symmetry parameters of the field

configuration φ. Parameters (ξ,Λ) ≈ 0 are called trivial symmetry parameters. The set of

gauge parameters which satisfy the equations (A.3) in an asymptotic region, i.e. such that

in some large radius r limit the equations are satisfied at leading order, and which form

a Lie algebra, will be called ’candidate asymptotic symmetries’. The concept of (truely)

asymptotic symmetries are defined as a subset of those which are associated to finite,

conserved and integrable charges, see the next definitions.

It exists a canonical algorithm to construct a spacetime D − 2 form

kf [δφ;φ], (A.4)
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which is also a one-form in field space (because the expression is linear in δφ and its

derivatives) such that the following properties hold:

• The conserved quantity associated with any exact symmetry parameter f that pro-

vides the difference of charge between the solution φ and the solution φ + δφ where

δφ obeys the linearized equations of motion is given by

δQf :=

∮

S
kf [δφ;φ] (A.5)

and only depend on the homology class of the D−2 surface S. As a consequence, the

conserved charge (A.5) is finite and time-independent. One can further show that

the conserved charge is unique, i.e. there is a one-to-one correspondence mapping a

couple of symmetry parameters and a surface of given homology class and conserved

charges (A.5) [73].

• The quantity associated with a candidate asymptotic symmetry parameter f that

provides the difference of charge between the solution φ and the solution φ + δφ

where δφ obeys the linearized equations of motion is given by

δQf := limr→∞

∮

Sr

kf [δφ;φ]. (A.6)

This quantity can be infinite and/or not conserved depending on the choice of bound-

ary conditions obeyed by φ and δφ. Given a definition of phase space, one has to

discard any candidate asymptotic symmetry which violates the conditions of finite-

ness and conservation of the charges.

• The form (A.4) is constructed out of the equations of motion and therefore does not

depend on boundary terms that may be added to the Lagrangian. Moreover, the

form is a linear functional of the equations of motion, and so, of the Lagrangian. One

can therefore construct this form by summing up the individual contributions from

the different pieces of the Lagrangian.

Additional properties of the charge form (A.4) are discussed in [62, 74]. In the case of the

Lagrangian (A.1), one gets

kξ,Λ[δφ;φ] = k
g
ξ [δg; g] + kA

ξ,Λ[δφ;φ], (A.7)

where the gravitational contribution to the charge form is given by [51, 75]

k
g
ξ [δg; g] = −δQg

ξ − iξΘ
g[δg] −E

g
L[Lξg, δg], (A.8)

where

Q
g
ξ = ⋆

(

1

2
(Dµξν − Dνξµ)dxµ ∧ dxν

)

, (A.9)

Θg[δg] = ⋆
(

(Dσδgµσ − gαβDµδgαβ) dxµ
)

, (A.10)

E
g
L[δ2g, δ1g] = ⋆

(

1

2
δ1gµαgαβδ2gβνdxµ ∧ dxν

)

. (A.11)
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The term (A.9) is the Komar D − 2 form and the supplementary term, Eg
L, with respect

to the Iyer-Wald form [76] vanishes for Killing vectors but may be relevant for asymptotic

symmetries. In (A.7), we define δ as an operator acting on the fields φ but not on ξ. The

p-form contribution to the charge form is given by [77]

kA

ξ,Λ[δφ;φ] = −δQA

ξ,Λ + iξΘA − EA

L [LξA + dΛ, δA] (A.12)

with

QA

ξ,Λ = (iξA + Λ) ∧ ⋆F, ΘA = δA ∧ ⋆F, (A.13)

EA

L [δ2A, δ1A] = ⋆

(

1

2

1

(p − 1)!
δ1Aµα1···αp−1

δ2A
α1···αp−1

ν dxµ ∧ dxν

)

. (A.14)

The set of fields φ, δφ and gauge parameters (ξ,Λ) that satisfies the conditions

∮

S
δ1kf [δ2φ, φ] − (1 ↔ 2) = 0, (A.15)

∮

S
EL[δ1φ, δ2φ] − (1 ↔ 2) = 0, (A.16)

define a space of fields and parameters which we denote as the integrable space I. In

this space, we define the charges difference between the reference field φ̄ and the field φ

associated with f = (ξ,Λ) as

Q(ξ,Λ)[φ, φ̄] =

∮

S

∫

γ
k(ξ,Λ)[δφ, φ] + N(ξ,Λ)[φ̄], (A.17)

where γ is a path in field space contained in I and N(ξ,Λ)[φ̄] is an arbitrary normaliza-

tion constant. The condition (A.15) ensures that the charge is independent on smooth

deformations of the path γ. The condition (A.16) is a technical assumption needed for the

representation theorem, see below. A candidate asymptotic symmetry f [φ] will be called

an asymptotic symmetry of a given phase space at φ if the conserved charges associated to

f [φ] around φ are all finite, conserved and integrable.

Let us denote as A the largest algebra of asymptotic symmetries f [φ] =

(ξ[g,A],Λ[g,A]) such that for each field φ in the phase space the set of parameters f [φ]

form a closed Lie algebra under the bracket defined in (A.2) and such that all these alge-

bras are isomorphic. Using the conditions (A.15)-(A.16), one can then show that for any

solutions φ̄ and φ in the integrable space, and for any (ξ, λ), (ξ′, λ′) in A, the Dirac bracket

defined by

{

Q(ξ,Λ)[φ, φ̄],Q(ξ′,Λ′)[φ, φ̄]
}

≡
∮

S∞

k(ξ,Λ)[(Lξ′gµν ,Lξ′A + dΛ′);φ] (A.18)

can be written as

{

Q(ξ,λ)[φ, φ̄],Q(ξ′,Λ′)[φ, φ̄]
}

= Q[(ξ,Λ), (ξ′,Λ′)]G [φ, φ̄] −N[(ξ,Λ), (ξ′,Λ′)]G [φ̄] + K(ξ,Λ), (ξ′,Λ′)[φ̄],

(A.19)
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where

K(ξ,Λ), (ξ′,Λ′)[φ̄] =

∫

S∞

k(ξ,Λ)[(Lξ′ ḡµν ,Lξ′Ā + dΛ′); φ̄] (A.20)

is a central extension which is considered as trivial if it can be reabsorbed in the normal-

ization of the charges N[(ξ,Λ), (ξ′,Λ′)]G [φ̄].

A.2 Charge form for a more general Lagrangian

For a general action with r scalar fields −→χ = {χ1, . . . χr} and any number of p-form fields,

I =
1

16πG

∫

(

R ⋆ 1l − 1

2
⋆ d−→χ ∧ d−→χ − 1

2

∑

a

e−
−→αa.−→χ ⋆ Fa ∧Fa

)

, (A.21)

the charge form is given in terms of the building blocks defined in section A.1 as

kξ,Λa[δφ;φ] = k
g
ξ [δg; g] +

∑

a

e−
−→αa.−→χ kAa

ξ,Λa[δφ;φ] +
∑

i

k
χi

ξ [δφ;φ]

+
∑

a

k
Aa suppl
ξ,Λa

[δφ;φ], (A.22)

where

k
χi

ξ [δφ;φ] = iξ
(

⋆ (dχiδχi)
)

no sum over i , (A.23)

k
Aa suppl
ξ,Λa

[δφ;φ] = δ−→χ .−→α e−
−→α a.−→χ QAa

ξ,Λa
. (A.24)

The last contribution can be understood by the fact that the charge form of the p-forms will

have an expression similar to (A.12) with a Komar term QA
a

ξ,Λa including the factor e−
−→αa.−→χ .

In section 2.3.1, we compute charges for a solution of a five dimensional theory with a

Chern-Simons term (2.36) of the following form

ICS = B ∧ dC. (A.25)

One can compute the corresponding contribution to the charge form and one gets

kCS[δφ;φ] = δB ∧ iξC − iξB ∧ δC . (A.26)

Note also that in the string frame I = 1
16πG

∫ (

e−2χR ⋆ 1l − 1
2 ⋆ dχ ∧ dχ + . . .

)

, the gravi-

tational contribution to the charge form is modified to

k
g stringframe
ξ [δφ;φ] = e−2χ k

g
ξ [δφ;φ] − δ(e−2χ)Qg

ξ + terms(∂χ) , (A.27)

where the last terms are proportional to at least one derivative of the dilaton and thus

vanish if the dilaton is constant. They play no role for the solutions of interest in this paper.
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B Candidate asymptotic symmetries for Lifshitz spacetimes

Gravity duals to non-relativistic systems governed by Lifshitz symmetry have also been

considered [60]. The zero-temperature background

ds2 =
dr2

r2
− r−2zdt2 + r−2dxidxi (i = 1, . . . , d) (B.1)

can be described formally as the Kaluza-Klein reduction along the null direction x+ of

the background (1.1). The kinematics analysis of these spacetimes will therefore be very

similar to the one performed in the main text. However, since the theory describing Lifshitz

spacetimes is different than Schrödinger spacetimes, the analyses of conserved charges will

be different. The lack of a Null Melvin Twist procedure will also prevent one to use

correspondences with AdS to derive the conserved charges. Since the only black hole

solutions known so far are numerical [78–80], we will not attempt to construct an analytical

phase space in this paper and we will limit our discussion to kinematical aspects of the

asymptotic symmetries.

For simplicity, let us focus on the d = 2 case. We solved the asymptotic Killing

equations up to certain convenient orders and obtained the following candidate asymptotic

Killing vectors,

ξasym =
r

z
L′(t)∂r + L(t)∂t +

(

X1(t) + x2M +
x1

z
L′(t)

)

∂x1

+

(

X2(t) − x1M +
x2

z
L′(t)

)

∂x2 . (B.2)

The exact symmetries are recovered when L′′(t) = 0, X1 ′(t) = 0 and X2 ′(t) = 0. The

Hamiltonian corresponds to L(t) = 1, the dilations to L(t) = 2t, the x1-translations to

X1(t) = 1, the x2-translations to X2(t) = 1 and the rotations to M . Defining the generators

Ln = ξasym

(

L(t) = −2−n/2tn+1
)

for n ∈ Z, (B.3)

Xi
n = ξasym

(

Xi(t) = −2−n/2tn+1/2
)

for n ∈ Z +
1

2
, (B.4)

we obtain the infinite dimensional algebra

i[Lm, Ln] = (m − n)Lm+n ,

i[Lm,Xi
n] =

(

m

z
− n +

2 − z

2z

)

Xi
m+n , (B.5)

[Xi
m,Xj

n] = 0 .

The asymptotic symmetry algebra of Lifshitz spaces is a truncation of the Schrödinger

algebra schz(d) (2.4). The generalization of these candidate asymptotic symmetries to any

dimensions is straightforward. It is amusing to observe that, for d = 1 and z = 2, (B.5)

is precisely the symmetry algebra of the Burgers equation driven by an external force

relevant in turbulence theory (see e.g. [81]). On the other hand, the two-dimensional
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metric (d = 0) is also a solution of Einstein-Maxwell theory with negative cosmological

constant, like AdS2. It might therefore be interesting to see whether the corresponding

asymptotic algebras admit central extensions, in the spirit of [40, 82].

The realization of these symmetries on a phase space will lead to the same kind of

difficulties we encountered for the Schrödinger case. Indeed, in order to compute the

charges, we will have to integrate on the xi-plane and therefore we will obtain infinite

results. The infinite charges could then be regulated by introducing a ‘box’. The Dirac

bracket will have to be modified in order to accomodate the action of generators on the

regulator. We therefore expect that the infinite dimensional algebra will not be realized if

we follow the same strategy as the one presented in this paper for the Schrödinger case.
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